Оптическая физика

Курс лекций по строительной механике
Детали машин принципы проектирования
Основы конструирования
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Архитектура Киевской Руси
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи
масляными красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой
гармонии
История искусства
Балетный театр
История искусства средних веков
Техника живописи различных мастеров
Джорджоне и Тициан
Лекции и задачи по физике
Расчет электротехнических цепей
Электротехника и электроника
Физика атома
Электромагнетизм
Физические основы механики
Молекулярная физика
Оптика
Оптическая физика
Электричество
Постоянный ток
Лабораторные работы по электронике
Операционный инвертирующий усилитель
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности
изготовления диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления
электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных
диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Начертательная геометрия
Аксонометрия и проекции
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных
соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного
изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Классификация информационно
-вычислительных
систем
Иерархия протоколов вычислительной
сети
Пользовательские процессы и
уровни управления в ИВС
Обзор сетевых операционных систем
Математика задачи
Задачи контрольной работы
Математика функции
Математический анализ
Линейная алгебра
Дифференциальные уравнения
Требуется вычислить циркуляцию поля
Теория функции комплексного переменного
Решение задач типового задания
из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Энергетика
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Информатика
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации
 

Волновая и квантовая оптика Природа света и законы его распространения интересо­вали древнегреческих ученых – Платона, Эвклида, Аристотеля еще в 400-300 гг. до нашей эры. Тогда были сформулированы законы прямолинейного распространения и отражения света, были сделаны первые попытки объяснить преломление света. К 140 г. нашей эры Птолемеем был собран большой эксперимен­тальный материал и составлены таблицы углов падения и пре­ломления световых лучей, однако найти математическую связь между ними ему не удалось. Закон преломления был открыт почти через полторы тысячи лет, в 1621 г. голландским ученым В.Снеллиусом.

Явление полного внутреннего отражения. Вещество, имеющее больший абсолютный показатель преломления, считается оптически более плотным.

Принцип Гюйгенса. Процесс распространения волны в некоторой среде называется волновым процессом. Геометрическое место точек, до которых доходит волновое возмущение к данному моменту времени называется волновым фронтом. Геометрическое место то­чек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновых поверхностей можно провести беско­нечное множество, а волновой фронт для данного момента времени только один

Метод Юнга. Получение интерференционной картины. Как уже отмечалось, когерентных источников света в природе не существует. Однако когерентные световые волны можно получить, если свет, идущий от одного источника, разде­лить на две (или более) части и затем заставить их встретиться. В силу общности своего происхождения полученные лучи должны быть когерентными и при наложении интерферировать. Такое разделение может быть осуществлено с помощью экранов и щелей (метод Юнга), зеркал (зеркала Френеля) и преломляющих тел (бипризма Френеля).

Интерференция света в тонких пленках. В природе мы неоднократно наблюдали радужную окраску мыльных пузырей, тонких пленок нефти и масла на поверхности воды и оксидных пленок на поверхности металлов. Эти явления обусловлены интерференцией света в тонких пленках, возникающей при наложении когерентных световых волн, отраженных от верхней и нижней поверхностей пленки.

Дифракция света. Принцип Гюйгенса-Френеля. Если свет от источника через сферическое отверстие на­править на экран, то, согласно закону прямолиней­ного распространения света, на экране должно наблюдаться светлое пятно АВ - изображение отверстия. При уменьшении отвер­стия его изображение также должно уменьшаться. Однако опыт привел к неожиданному результату: начиная с определенного размера отверстия его дальнейшее уменьшение сопровождается увеличением пятна (А’B’), которое становится расплывчатым, нерав­номерно освещенным и на нем появляется ряд колец

Дифракция Френеля на круглом отверстии и диске. Пусть источник света S0 испускает сферическую волну. Поставим на пути волны непрозрачный экран Э1 с круглым отверстием АВ таким образом, чтобы перпендикуляр, опущенный из S0 на экран, проходил через центр отверстия

Дифракция Фраунгофера на дифракционной решетке. Совокупность параллельных щелей одинаковой ширины а, разделенных непрозрачными промежутками шириной b, лежащих в одной плоскости, называется одномерной дифракционной решеткой. В зависимости от практического назначения дифракционные решетки различаются по виду, материалу и спо­собу изготовления, а также по количеству щелей N (от 0,25 до 6000/мм).

Естественный и поляризованный свет. Из теории Максвелла следует, что свет представляет совокупность множества поперечных электромагнитных волн: векторы напряженностей электрического Еi и магнитного Hi полей у каждой волны взаимно перпендикулярны и колеблются перпендикулярно скорости υ распространения волны

Поляризация света при двойном лучепреломлении. Действие ряда поляризаторов основано на поляризации света при прохождении его через оптически анизотропные среды (т.е. среды, имеющие различные оптические свойства в различных направлениях). Все прозрачные кристаллы оптически анизотропны. Исключением являются кристаллы, имеющие кубическую кристаллическую решетку (например, соль NaCl).

Анализ плоскополяризованного света. Закон Малюса. Глаз человека не может отличить поляризованный свет от естественного, поэтому для анализа поляризованного свет необходимо использовать поляризаторы, которые в этом случае называются анализаторами. Все ранее перечисленные поляризующие устройства можно использовать для анализа поляризации света. Анализировать поляризованность света первым предложил французский физик Э. Малюс (1775-1812), установив закон изменения интенсивности поляризованного света.

Искусственная оптическая анизотропия. Оптически изотропные вещества могут стать анизотропными под действием ряда внешних воздействий, это явление называют искусственной оптической анизотропией.

Взаимодействие элетромагнитных волн с веществом Переменное электромагнитное поле световой волны, распространяющейся в диэлектрической среде, вызывает вынужденные колебания связанных зарядов (электронов и ионов), входящих в состав молекул среды, т.е. свет взаимодействует с веществом. Внешние электроны диэлектрика связаны с атомом не жестко и под влиянием внешнего поля электромагнитной волны испытывают смещение. Это смещение описывается гармонической функцией, т.е. электрон совершает гармонические колебания. Результатом таких колебаний являются вторичные волны, источниками которых являются электроны вещества. Рассмотрим несколько частных случаев взаимодействия световых волн с веществом.

Тепловое излучение тел Электромагнитное излучение, испускаемое атомами тела за счет внутренней (тепловой) энергии излучающего тела и зависящее только от температуры и оптических свойств данного тела, называется тепловым. Этот вид излучения происходит при всех температурах и представляет для физиков особый интерес, так как это единственное излучение, которое может находиться в состоянии термодинамического равновесия с нагретыми телами.

Квантовый характер излучения. После установления законов излучения стало очевидно, что первоочередная задача теории теплового излучения состоит в нахождении вида функции Кирхгофа, т.е. выяснение спектрального состава равновесного излучения абсолютно черного тела. Решение этой задачи вышло далеко за рамки теории излучения и сыграло огромную роль во всем дальнейшем развитии физики, т.к. привело к установлению квантового характера излучения и поглощения энергии атомами и молекулами.

Фотоэлектрический эффект В 1887 г. немецкий физик Генрих Герц во время экспериментов по излучению электромагнитных волн обнаружил интересное явление. Когда он освещал металлический заряженный шар ультрафиолетовыми лучами, заряд шара изменялся. В дальнейшем, было установлено, что металл, облучённый ультрафиолетовым светом, заряжается положительно. При этом оказалось, что фотоэффект безинерционен, т.е. пластина начинает разряжаться сразу после того, как на нее падает свет.

Математика, физика примеры решений задач, контрольных, курсовых.