Ядерная физика

Курс лекций по строительной механике
Детали машин принципы проектирования
Основы конструирования
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Архитектура Киевской Руси
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи
масляными красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой
гармонии
История искусства
Балетный театр
История искусства средних веков
Техника живописи различных мастеров
Джорджоне и Тициан
Лекции и задачи по физике
Расчет электротехнических цепей
Электротехника и электроника
Физика атома
Электромагнетизм
Физические основы механики
Молекулярная физика
Оптика
Оптическая физика
Электричество
Постоянный ток
Лабораторные работы по электронике
Операционный инвертирующий усилитель
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности
изготовления диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления
электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных
диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Начертательная геометрия
Аксонометрия и проекции
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных
соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного
изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Классификация информационно
-вычислительных
систем
Иерархия протоколов вычислительной
сети
Пользовательские процессы и
уровни управления в ИВС
Обзор сетевых операционных систем
Математика задачи
Задачи контрольной работы
Математика функции
Математический анализ
Линейная алгебра
Дифференциальные уравнения
Требуется вычислить циркуляцию поля
Теория функции комплексного переменного
Решение задач типового задания
из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Энергетика
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Информатика
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации
 

Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным) реактором. Схема ядерного реактора на медленных нейтронах

Элементарные частицы Виды взаимодействий элементарных частиц В настоящее время элементарными частицами называют большую группу мельчайших частиц материи, которые не являются атомами или атомными ядрами (за исключением протона — ядра атома водорода) и которые при взаимодействии ведут себя как единое целое. Характерным свойством всех элементарных частиц является их способность к взаимным превращениям (рождению и уничтожению) при взаимодействии с другими частицами.

Систематика элементарных частиц В настоящее время элементарные частицы делятся на большие классы и подклассы в зависимости от типов фундаментальных взаимодействий, в которых эти частицы участвуют. Элементарные частицы объединены в три группы: фотоны, лептоны и адроны. Естественно, что отнесенные к каждой из этих групп элементарные частицы обладают общими свойствами и характеристиками, которые отличают их от частиц другой группы.

Законы сохранения В физике элементарных частиц не существует законченной теории, тогда как законы сохранения хорошо соблюдаются. Многие законы сохранения для элементарных частиц уже установлены из опыта, а соответствующие фундаментальные законы их поведения еще неизвестны. Поэтому законы сохранения играют здесь главенствующую роль и позволяют анализировать процессы, механизм которых еще не раскрыт.

Кварки Обилие открытых и вновь открываемых адронов навела Гелл-Мана и Цвейга (1964 г.) на мысль, что все они построены из каких-то других более фундаментальных частиц. Ими  была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

Стандартная теория Электрослабые взаимодействия. Вайнберг, Глэшоу и Салам (70-ые годы XX столетия) создали единую теорию электрослабых (т. е. электромагнитных и слабых) взаимодействий. Из этой теории вытекает, что переносчиком слабых взаимодействий является группа частиц, получивших название промежуточных векторных бозонов. В эту группу входят две заряженные частицы (W+ и W-) и одна нейтральная (Z0) (W — первая буква английского слова weak — слабый). Таким образом, слабые взаимодействия подобны электромагнитным, переносчиками которых также являются векторные бозоны — фотоны. Векторными называются частицы со спином, равным единице (и отрицательной четностью).

Электрическое поле Давно известны экспериментальные факты, указывающие на особый вид взаимодействия между телами, обладающими особыми свойствами. Во-первых, такие тела взаимодействуют как с силами притяжения, так и с силами отталкивания, во-вторых, величина силы взаимодействия убывает обратно пропорционально квадрату расстояния между центрами взаимодействующих тел. Особое свойство, определяющее такой характер взаимодействия было названо электрическим зарядом, а для удобства описания взаимодействия было введено понятие электрического поля – особого вида материи, по средствам которого взаимодействуют заряды. Сила взаимодействия зарядов определяется экспериментальным законом Кулона.

Электрическое поле диполя. Диполь во внешнем электрическом поле. Электрическим диполем называется система двух одинаковых по величине, но разноименно заряженных частиц. Прямая, проходящая через оба заряда, называется осью диполя. Найдем потенциал и напряженность поля в точке, характеризующейся полярными координатами r и θ, относительно центра диполя. Расстояния от центра диполя до каждого из зарядов равно a, тогда расстояния от зарядов до выбранной точки пространства равно

Поляризация диэлектриков. Чтобы охарактеризовать поляризацию диэлектрика в данной точке, введем дипольный момент единицы объема диэлектрика и назовем его поляризованностью диэлектрика  - у изотропных диэлектриков поляризованность пропорциональна напряженности внешнего поля. Коэффициент пропорциональности называется диэлектрической восприимчивостью χ. Для неполярных диэлектриков , где n – концентрация молекул, тогда . Для полярных диэлектриков тепловое движение стремится хаотически ориентировать дипольные моменты молекул и в результате устанавливается преимущественное направление дипольных моментов, совпадающее с направлением внешнего поля. Диэлектрическая восприимчивость таких молекул обратно пропорциональна их температуре.

Энергия конденсатора. Рассмотрим конденсатор как систему зарядов, находящихся на его пластинах, тогда энергия системы зарядов равна  (4) С учетом формулы (3) выражение (4) можно записать как  (4*)

Закон Ома для замкнутой цепи. Электростатические силы совершают работу по переносу заряда из точки с большим потенциалом в точку с меньшим потенциалом до тех пор, пока потенциалы на концах проводника не станут равны и ток не прекратится. Чтобы ток не прекращался в проводнике должны действовать силы, задача которых вернуть заряд в точку с большим потенциалом. Такие силы имеют не электростатическую природу и называются сторонними. Тогда по перенесению заряда совершается работа не только электростатическими, но и сторонними силами

Экспериментально полученный закон Ампера позволяет описать поведение проводника с током во внешнем магнитном поле:  (10), где I – сила тока в проводнике, l – длина проводника, B – индукция внешнего магнитного поля. Так как сила является результатом векторного произведения, вектор должен быть перпендикулярен плоскости векторов элемента тока и магнитной индукции . Отметим, что в магнитостатике, как и в электродинамике, сила тока является скалярной величиной, поэтому, направление имеет элемент длины контура или элемент тока .

Токи смещения и уравнения Максвелла Для стационарных токов проводимости конденсатор является разрывом в цепи, так как силовые линии электрического поля начинаются и заканчиваются на зарядах. Возникает вопрос: каким образом происходит зарядка конденсатора? Если линии напряженности прерываются, а перенос заряда все-таки происходит, значит, между пластинами конденсатора должны существовать токи смещения . Таким образом, в контуре могут существовать как токи проводимости , так и токи смещения: .

Применение закона Ампера Рамка с током во внешнем магнитном поле.

Расчет напряженностей и потенциалов электрических полей Сфера. Найдем напряженность сферы внутри E1 и снаружи E2. Выбираем в качестве гауссовой поверхности сферу радиусом r<R для нахождения поля внутри и r>R – снаружи сферы. , так как у сферы заряды расположены только на поверхности, поэтому напряженность поля внутри сферы равна нулю (нет зарядов), а потенциал постоянен и равен потенциалу на поверхности. , то есть, на расстояниях r>R от своего центра сфера ведет себя как точечный заряд. Ее напряженность равна  (2), а потенциал равен  (3). Напряженность и потенциал на поверхности сферы, соответственно, равны  (2*) и  (3*).

Напряженность на оси кольца Рассмотрим кольцо радиусом R, равномерно заряженное с линейной плотностью . Найдем напряженность поля в точке, расположенной на оси кольца на расстоянии h от его центра.

Соединение конденсаторов. Последовательное соединение. Рассмотрим батарею конденсаторов, соединенных последовательно. Заряды конденсаторов равны друг другу и заряду батареи, а напряжение батареи равно U=U1+U2+…+Un.

Математика, физика примеры решений задач, контрольных, курсовых.