Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи ССтроительная механика Детали машин Электроника Электротехника Энергетика Физика Машиностроительное черчение Начертательная геометрия Решение задач типового задания из учебника Кузнецова Вычислить интеграл ТФКП Вычислить интегралпособ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

З а д а ч а 48. Построить перспективу отрезка АВ (рис.49).


Рис. 49

Перспектива точки строится в пересечении перспектив двух прямых, проходящих через точку в пространстве.

Строим перспективу прямой l , которой принадлежит отрезок АВ (см. предыдущую задачу). Чтобы на построенной прямой зафиксировать положение определенной точки, в пространстве через эту точку проводим вспомогательную прямую и строим перспективу этой прямой. Вспомогательные прямые могут быть любого направления. Для построения перспективы точки В через нее проводим прямую n , перпендикулярную картине ( n1 ^ П/1 ). В перспективе известна точка схода такой прямой – она совпадает с главной точкой картины.

Для построения перспективы точки А через нее проведена прямая m, проходящая через точку стояния (основание точки зрения). Для этой прямой известно направление ее в перспективе – она параллельна главной линии.

З а д а ч а 49. Построить перспективу плана здания (рис.50).

Рис. 50

При анализе формы плоской фигуры замечаем, что она содержит отрезки из пучков параллельных прямых.

Построив точку схода F/ перспективных изображений пучка прямых АВ, ЕМ, КN и их картинные следы (1/1, А/1, К/1), строим перспективу этих прямых.

Заметим, что пучок параллельных прямых АЕ, ВС, КТ, MN не имеет в пределах чертежа доступную точку схода. Поэтому на перспективном изображении положение каждой вершины многоугольника плана определен с помощью вспомогательных прямых, проходящих через точку стояния (см. в задаче 48 построение перспективы точки В).

З а д а ч а 50. Построить перспективу вертикального отрезка АВ  (рис.51).

Вначале строим перспективу точки А, принадлежащей предметной плоскости. Для этого проводим через точку А две вспомогательные прямые: n ⊥  П/ ,

t – идущую в точку стояния.

Рис. 51

Через перспективу точки А проводим вертикальную прямую – направление перспективы отрезка АВ. Для того чтобы получить перспективу точки В , через прямую  n проводим вертикальную плоскость и строим линию пересечения плоскости S с картиной П/ ( S ∩ П/ ); затем, отложив на этой прямой от основания картины отрезок 1/ 10 , равный величине отрезка  АВ ( 1/10 = А2 В2 ) , проводим в плоскости горизонталь заданной высоты до пересечения с вертикальной прямой – направлением перспективы отрезка АВ. Заметим, что прямая  n является нулевой горизонталью плоскости (предметным следом плоскости S ). Так как горизонталь параллельна n , то в перспективе они пересекаются в общей точке схода (в нашем примере точкой схода является главная точка картины, так как n ⊥ П/ ).

Ортогональный метод проецирования. Метод проецирования заключается в том, что любая точка пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Ортогональное проецирование это такой метод когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций.
Начертательная геометрия в конструкторской работе