Начертательная геометрия Поверхности второго порядка Аксонометрические изображения Позиционные задачи ССтроительная механика Детали машин Электроника Электротехника Энергетика Физика Машиностроительное черчение Начертательная геометрия Решение задач типового задания из учебника Кузнецова Вычислить интеграл ТФКП Вычислить интегралпособ концентрических сфер Метрические задачи Способ вращения Построить пересечение конуса и призмы

З а д а ч а 29. Построить точки пересечения прямой с поверхностью (рис. 30): а) поверхность коническая; б) поверхность сферическая.

Через прямую проводим секущую плоскость так, чтобы она пересекла конус или сферу по окружности. Точки пересечения прямой и линии сечения К и Т являются точками пересечения прямой с поверхностью.

Рис. 30

З а д а ч а 30. Построить пересечение двух поверхностей  (рис.31).

Для решения задачи такого типа применяется метод секущих плоскостей. Секущие плоскости – посредники выбираются так, чтобы при пересечении с каждой из поверхностей образовывались удобные для построения линии (прямые или окружности).

В данном примере в качестве посредников выбираем горизонтальные плоскости, которые рассекают тор и сферу по окружностям.

Строим характерные точки А, В, К, Т. Для 

 определения К и Т используем плоскость – 

 Рис. 31 посредник  Г.

Случайные точки определяем с помощью плоскостей Σ , Δ . Определяем видимость кривой пересечения, учитывая, что на горизонтальной проекции видима  только верхняя половина сферы. 

З а д а ч а 31. Построить пересечение соосных поверхностей вращения цилиндра и сферы, конуса и сферы (рис. 32).

Рис. 32

Соосные поверхности пересекаются по общим параллелям (окружностям), плоскости которых, как известно, перпендикулярны осям вращения.

Определяем характерные точки А, В как точки пересечения очерков.

Строим линии пересечения поверхностей.

З а д а ч а 32. Построить пересечение двух поверхностей вращения, оси которых пересекаются в точке О (рис.33). Используем секущие сферы, центры которых находятся в точке О.

Каждая сфера-посредник соосна с обоими пересекающимися цилиндрами. Линии пересечения сферы и цилиндра пересекаются между собой и определяют точки, принадлежащие линии пересечения двух цилиндров. Для определения радиусов максимальной и минимальной секущих сфер решаем следующие задачи. 

Rmax есть величина, равная расстоянию от О2 до самой далекой характерной точки А2. Для определения Rmin вписываем сферы в каждую из пересекающихся поверхностей R1 и R2 . Минимальным радиусом секущей сферы ( Rmin ) будет больший из двух радиусов вписанных сфер - R2 = Rmin .

 Рис. 33

Ортогональный метод проецирования. Метод проецирования заключается в том, что любая точка пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Ортогональное проецирование это такой метод когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций.
лучшие русские сериалы через торрент
Начертательная геометрия в конструкторской работе