Математика вычисление производной и интеграла

Производная функции Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Производная и дифференциал. Исследование функций.

Неопределенный интеграл. Табличное интегрирование

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций. На наш взгляд, приведенный там материал достаточно прост и показателен, сделаем только два замечания

Функции нескольких переменных Пример. Найти область определения функции

Двойной интеграл Отметим здесь, что при интегрировании функции z(x; y) по переменной х, так же как и при дифференцировании, считают y=const и пользуются обычными правилами вычисления интеграла. При этом пределы интегрирования могут зависеть от у (но не от х).

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

Определенные интегралы, несобственные интегралы

ОДУ высших порядков. Линейные уравнения с постоянными коэффициентами

Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

Вычислить значение функции  в точке , ответ представить в алгебраической форме комплексного числа

Определить вид кривой .

Проверить, может ли функция  быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.

Разложить в ряд Лорана функцию  в окрестности особой точки .

Вычислить интегралы от функции комплексного переменного

Вычислить интегралы, используя теорему Коши о вычетах

Изменить порядок интегрирования в интеграле .

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Найти объем тела  ограниченного поверхностями

Найти массу пластинки (): ,

Найти массу тела , ограниченного поверхностями: ; ; ; ; плотность массы тела .

Вычислить криволинейный интеграл

 

Вычислить массу дуги кривой () при заданной плотности :

Вычислить работу силы  при перемещении единичной массы вдоль кривой  линии пересечения двух поверхностей:  от точки  до точки 

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора ,

Исходя из определения производной, найти f ¢(0) для f(x)=

Найти производную показательно-степенной функции y=.

Для функции y(x), заданной неявно уравнением  xey  yex+x=0, найти y¢x и y¢¢xx (аналитические выражения и значения в точке x0=0).

С помощью дифференциала функции вычислить приближённо   при x = 7,76.

Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2).

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора:  f(x)=  ln2x, x0 =1.

Неопределенный интеграл Пример .

Найти интеграл . Решение. Воспользуемся формулой интегрирования по частям: .

Найти интеграл .

Определенный интеграл Вычисление определенного интеграла

Приложения определенного интеграла Площадь плоской криволинейной трапеции. Пример. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Тройной интеграл в цилиндрических и сферических координатах

Вычислить тройной интеграл , где

Вычислить тройной интеграл , где

С помощью тройного интеграла наряду с другими величинами можно вычислить

Применение тройных интегралов. Масса неоднородного тела

Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

Цилиндрические координаты

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.

Вычисление двойного интеграла в декартовых координатах

Двойной интеграл в полярных координатах

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.

Криволинейный интеграл первого рода

Вычисление криволинейных интегралов 1-го рода

Криволинейный интеграл второго рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Вычислить криволинейный интеграл первого рода

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости. Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Изобразить на плоскости фигуру D. Вычислить массу пластины О с поверхностной плотностью распределения μ=μ(х, у). Рекомендуется использовать полярную систему координат.

С помощью двойного интеграла найти площадь фигуры, ограниченную заданными линиями.

Математика, физика примеры решений задач, контрольных, курсовых.