Математика решение задач на вычисление пределов

Предел последовательности Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…)

Вычислить  .

Предел функции  Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

Вычислить предел с помощью формулы Тейлора: .

Предел, непрерывность ФНП ПРИМЕР. Доказать по определению . Решение. Берем . Ищем  

Предел и непрерывность функции обной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство .

ПРИМЕР Показать по определению . Теоремы о пределах о свойствах функций, имеющих конечные пределы

Существование предела частного функций  доказывается аналогично, если предварительно установить ограниченность функции  на некоторой окрестности .

Односторонние пределы

Второй замечательный предел

Различные определения непрерывности функции в точке Эквивалентность определений либо следует из эквивалентности определений конечного предела функции, либо может быть установлена.

Провести полное исследование поведения функции и построить её график

Элементы теории множеств Понятие "множество" – неопределяемое понятие. Под множеством понимается "набор", "коллекция", "совокупность" и т.п. отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Предметы или объекты, составляющие множество, называются элементами множества. Обычно множества обозначают большими буквами , а их элементы – малыми буквами  преимущественно латинского алфавита.

ПРИМЕР. Доказать, что . РЕШЕНИЕ. Два множества совпадают, если каждое из них является подмножеством другого.

ПРИМЕР. Покажем, что множество  – счетное. Рассмотрим множество положительных рациональных чисел . Элементы множества  можно расположить в виде бесконечной прямоугольной таблицы

Математическая логика Для записи определений, теорем, математических рассуждений в курсе высшей математики целесообразно применять символику, используемую в математической логике.

ПРИМЕР. Задано высказывание , , здесь   – действительные числа. Прочитать высказывание, выяснить его смысл, установить – истинно оно или ложно, построить отрицание высказывания.

Грани числовых множеств Напомним свойства множества всех действительных чисел .

Математика, физика примеры решений задач, контрольных, курсовых.