Математика Линейная алгебра

Курс лекций по строительной механике
Детали машин принципы проектирования
Основы конструирования
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Архитектура Киевской Руси
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи
масляными красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой
гармонии
История искусства
Балетный театр
История искусства средних веков
Техника живописи различных мастеров
Джорджоне и Тициан
Лекции и задачи по физике
Расчет электротехнических цепей
Электротехника и электроника
Физика атома
Электромагнетизм
Физические основы механики
Молекулярная физика
Оптика
Оптическая физика
Электричество
Постоянный ток
Лабораторные работы по электронике
Операционный инвертирующий усилитель
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности
изготовления диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления
электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных
диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Начертательная геометрия
Аксонометрия и проекции
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных
соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного
изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Классификация информационно
-вычислительных
систем
Иерархия протоколов вычислительной
сети
Пользовательские процессы и
уровни управления в ИВС
Обзор сетевых операционных систем
Математика задачи
Задачи контрольной работы
Математика функции
Математический анализ
Линейная алгебра
Дифференциальные уравнения
Требуется вычислить циркуляцию поля
Теория функции комплексного переменного
Решение задач типового задания
из учебника Кузнецова
Математический анализ задачи
Вычислить интеграл
Решение рядов
Дифференциалы от функции нескольких переменных
Энергетика
Быстрый реактор
Курсовой проект реактор ВВЭР
Курсовой проект «Электрическая часть
электростанций и подстанций»
Действие радиации на человека
и окружающую среду
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Информатика
Лабораторные работы по информатике
Информационные технологии
Технологии защиты информации
 

Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

Пример. Вычислить определитель матрицы А =

Определить ранг матрицы

Решение произвольных систем линейных уравнений Как было сказано выше, матричный метод и метод Крамера применимы только к тем системам линейных уравнений, в которых число неизвестных равняется числу уравнений. Далее рассмотрим произвольные системы линейных уравнений.

Решить систему линейных уравнений методом Гаусса.

Система координат Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Пример. Найти скалярное произведение векторов  и ,

Уравнение плоскости по одной точке и двум векторам коллинеарным плоскости Пусть заданы два вектора  и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы  должны быть компланарны.

Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

Линейное (векторное) пространство Как известно, линейные операции (сложение, вычитание, умножение на число) определены по-своему для каждого множества (числа, многочлены, направленные отрезки, матрицы). Сами операции различны, но их свойства одинаковы.

Пример. Задано линейное преобразование А, переводящее вектор в вектор  и линейное преобразование В, переводящее вектор  в вектор . Найти матрицу линейного преобразования, переводящего вектор  в вектор .

 

Пример. Найти предел

Комплексные числа Определение. Комплексным числом z называется выражение , где a и b – действительные числа, i – мнимая единица

Даны два комплексных числа . Требуется а) найти значение выражения в алгебраической форме, б) для числа  найти тригонометрическую форму, найти z20, найти корни уравнения

Найти производную функции .

Исследование функций с помощью производной Возрастание и убывание функций

Асимптоты При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

Пример. Исследовать функцию и построить ее график. Находим область существования функции.

Пример. Составить уравнения касательной и нормальной плоскости к линии, заданной уравнением   в точке t = p/2.

Исследовать функцию  и построить ее график.

Производные и дифференциалы функций нескольких переменных

Найти уравнения касательной плоскости и нормали к поверхности в точке М(1, 1, 1).

Производная по направлению Рассмотрим функцию u(x, y, z) в точке М( x, y, z) и точке М1( x + Dx, y + Dy, z + Dz).

Движение в вязкой среде. Пусть частица постоянной массы падает под действием силы тяжести, причем сила сопротивления Fr, действующая на частицу со стороны внешней среды, пропорциональна скорости и противоположна ей по направлению

Основные понятия теории дифференциальных уравнений Дифференциальным уравнением называют уравнение, в котором неизвестной является функция одной или нескольких переменных, причем в уравнение входят производные этой функции.

Линейные уравнения первого порядка. Уравнение Бернулли Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и ее производной

Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называют уравнение

Элементы линейной алгебры Определители второго порядка

Определители 4-го порядка. Методы их вычисления

Ранг матрицы

Теорема Кронекера-Капелли Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы

Векторная алгебра и аналитическая геометрия

Координаты вектора Рассмотрим декартову прямоугольную систему координат Oxyz. Обозначим , ,   – единичные векторы, направленные соответственно вдоль осей Ox, Oy, Oz (орты осей). Эти векторы называются декартовым прямоугольным базисом в пространстве.

Смешанное произведение векторов Смешанным, или векторно-скалярным произведением трех векторов (обозначается ) называется произведение вида .

Угол между двумя прямыми

Общее уравнение кривой второго порядка

Неполные уравнения плоскостей Если в уравнении плоскости   какие-либо из коэффициентов равны нулю, то получится неполное уравнение плоскости.

Поверхности второго порядка Цилиндрической поверхностью называется поверхность, составленная из всех прямых, пересекающих данную линию L и параллельных данной прямой . Линия L при этом называется направляющей цилиндрической поверхности, а каждая из прямых, составляющих поверхность и параллельных прямой , – ее образующей

Лекция Исследование поведение функции Признак монотонности функции Пример. Исследовать функции на монотонность: .

Услуга запуска двигателя в мороз смотрите на сайте.
коррекция спидометра
мебель дачная для кухни
Математика, физика примеры решений задач, контрольных, курсовых.